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Abstract

The gravity-type fish cage is extensively applied in open-sea fishery aquaculture. Its practicality is closely related to

the reliability of the flotation ring which is its main load-bearing component. Therefore, it is necessary to study the

elastic responses of the flotation ring in ocean waves. Here, an analytical method is proposed to analyze the elastic

deformations of a circular ring subjected to water waves. The governing equations of six degree-of-freedom motions

and elastic deformations are obtained according to Euler’s laws and curved beam theory. In order to examine the

method, a series of physical model tests were carried out. The surge and heave displacements of the ring between

the predicted results and experimental measurements are compared, and good correlation is represented. The effects of

the propagation directions of the incident wave on elastic responses of the ring are then analyzed. It is concluded that

small deformations of the ring occur when the configuration of the mooring cables is symmetrically arranged along the

propagation direction of the incident waves. Additionally, the out-of-plane stiffness is suggested to be strengthened in

order to diminish the corresponding deformations.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The near-shore fishery resources decrease exponentially, while the demands of the sea products continue to

dramatically increase. This imbalance in the demand–supply of marine resources has resulted in the fast development of

deep-sea fishery aquaculture over recent years. Vast open space and access to quality water are the main advantages of

deep-sea fishery aquaculture over its near-shore counterpart, thus enabling the former to be one of the most probable

modes of fishery. Among a variety of deep-sea fishery production tools, the gravity-type deep-sea fish cage distinguishes

itself from others for its high quality, high yield and high efficiency.

Generally speaking, the gravity-type net cage consists of three main components: a flotation ring, a cage net and

mooring cables. The flotation ring is the load-bearing component, providing the necessary strength of the entire cage in

water. The cage net is connected to the flotation ring, forming a closed space in water, inside which the fish are fed.

Through the mooring cables, the cage is loosely fixed in a particular spot in the deep sea.
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Deep sea is characteristically rough. Under the action of waves, a deep-water fish cage may experience large

deformations as well as rigid-body motions. Site observations have confirmed that a deep-water fish cage may deform to

such a large extent that permanent deformations occur, disabling the fish cage from further normal functionality

[Internet Webpage]. Therefore, studies of fish cages in waves have been a hot research topic over the recent years in the

field of ocean hydrodynamics. Fredriksson (2001) carried out dynamic analysis of a central spar fish cage in waves.

DeCew et al. (2005) examined motion and load responses of a modified gravity-type cage in order to improve the design

of the gravity-type fish cage and mooring system. Both numerical simulations and physical tests were employed in their

studies. Gui (2006) studied the hydrodynamic behavior of a gravity-type fish cage through physical model tests. Huang

et al. (2006) proposed a numerical model for analyzing the motions of a gravity-type fish cage composed of a flexible net

and a plastic flotation ring. Fredriksson et al. (2007) predicted the critical loading of net pen flotation structures using

finite-element modeling, and conducted the physical tests for the structural analysis. Furthermore, Det Norske Veritas

Riflex software has been used to model a fish farm.

Much of the aforementioned work is, however, based on the assumption that the load-bearing component floatation

ring of the fish cage is rigid, undergoing no deformations. Thus, in their models, only the rigid-body motions of the

flotation ring in waves are considered. This assumption is a first-order approximation, which may fail when the natural

frequencies of the floatation ring and the water waves are similar. From the viewpoint of structural dynamics, the elastic

response of the flotation ring in water waves is of vital importance. The aim of this paper is to study the elastic response

of the flotation ring. And the elastic response of the slender structure is a hot topic in ocean engineering. Li et al. (1997)

analyzed the in-line response of a horizontal flexibly mounted cylinder in regular and random waves. Galper and Miloh

(2000) studied the nonlinear coupled hydroelastic problem of a flexible slender structure embedded in a non-uniform

flow. Chaplin and Retzler (2001) carried out large-scale laboratory measurements of the hydrodynamic damping of

vertical oscillations of a circular cylinder beneath waves.

In this paper, the flotation ring is simplified into a circular ring. A theoretical model is proposed to study its elastic

deformation, in which, the cage net is neglected without loss of generality. Herein the in-plane and out-of-plane deformations

are analyzed together based on curved beam theory. Additionally, six-degree-of-freedom motions of the ring are coupled with

its elasticity. In Section 2, the equations governing the rigid-body motions are given according to Euler’s laws, and those

governing in-plane and out-of-plane deformations are obtained by curved beam theory. Generally speaking, the deformations

of a closed ring can be expressed as a weighted sum of various eigenmodes, and the mode superposition method is applied to

solve the governing equations. To calculate the wave forces acting on the ring, the Morison formula is used due to the small

ratio of the cross-sectional diameter to wavelength.When waves propagate along the x-axis, the correlation of numerical results

of surge and heave displacements with experimental data has been made in Section 4, and numerical examples are presented to

show the influence of elastic deformations, including effects of propagation directions of the incident wave.

2. Formulation of the problem

The configuration of a gravity-type fish cage is shown in Fig. 1, where the subtended angle is denoted by a. Points A,

B, C and D are attachment points, and Points A0, B0, C0 and D0 are anchored points. The cage net is neglected without

loss of generality. The flotation ring is moored by four lines in order to place the ring in a loosely fixed spatial position.

Fig. 2 shows the global coordinate system x–y–z fixed in the initial position and body coordinate system 1–2–3 fixed

with the ring. The coordinates of one system can be transformed to the other by the use of Bryant angles (Wittenburg,

1977) y1, y2 and y3 (see Appendix 1). The transformation matrix from the coordinate system x–y–z to the coordinate

system 1–2–3 is given as follows:

q11 q12 q13

q21 q22 q23

q31 q32 q33

2
64

3
75 ¼

cos y2 cos y3 cos y1 sin y3 þ sin y1 sin y2 cos y3 sin y1 sin y3 � cos y1 sin y2 cos y3
� cos y2 sin y3 cos y1 cos y3 � sin y1 sin y2 sin y3 sin y1 cos y3 þ cos y1 sin y2 sin y3
sin y2 � sin y1 cos y2 cos y1 cos y2

2
64

3
75,
(1)

where q with subscripts denotes the corresponding terms in the transformation matrix. It is noted that y1, y2 and y3 are
not the rotation angles of roll, pitch and yaw of the ring. Here the angular velocities of 1-, 2-and 3-axis are denoted by

o1, o2 and o3, respectively. The relationship is as follows:

@y1
@t
¼

o1 cos y3 � o2 sin y3
cos y2

;
@y2
@t
¼ o1 sin y3 þ o2 cos y3

@y3
@t
¼ o3 �

o1 cos y3 � o2 sin y3
cos y2

sin y2 (2)
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Fig. 1. The configuration of a fish cage.

Fig. 2. The coordinate system of the ring.
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In addition, the in-plane coordinate system n–w–v is established, in which the coordinate area n–w results from the

rotation of the coordinate area 1–2 around the 3-axis, and the direction of the v-axis is the same as that of the 3-axis. It

is noted that the u-axis considered is opposite to the direction of the n-axis in order to analyze the normal deformations.

The actual flotation system of a gravity-type fish cage consists of two floating rings, stanchions and handrails.

In general, the floating system is usually at the water surface. The two floating rings are the main parts bearing the
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Fig. 3. Cross-section of the ring.
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wave-induced loads. For simplicity, only the two floating rings are considered in our numerical model, as shown in

Fig. 3. Since the space between the outer and inner rings is much smaller than the scale of the floating system and wave

length, we can simplify it to a model of a single ring. The area of the cross-section and the moment of inertia, however,

are computed based on two rings (see Fig. 3) to comply with the quantity of the actual flotation ring. The moments of

inertia are computed according to the parallel-axis theorem.
2.1. Governing equations for rigid-body motions

Suppose that the wave propagates along a direction of angle s subtended with the x-axis. The ring undergoes six

degree-of-freedom motions. Three translational rigid-body motion displacements along the x-axis for surge, the y-axis

for sway and the z-axis for heave are denoted by xg, yg and zg, respectively. The translational displacements in the body

coordinate system are denoted by xb, yb and zb along the 1-axis, 2-axis and 3-axis.

The equations governing the rigid-body motions of the ring are considered along the 1-, 2- and 3-axis, because the

principal moment of inertia of the ring is constant in the body coordinate system. Applying Euler’s laws, the following

equations can be obtained.

Translational motions

The translational equation along the 1-axis is

rð2pRÞA
@2xb

@t2
þ
@zb

@t
o2 �

@yb

@t
o3

� �
¼

Z 2p

0

f 1Rdaþ q13

Z 2p

0

ðrwVf g� rAgÞRdaþ Fl1, (3)

where R denotes the radius of the ring, r the mass density of the material of the ring, rw the density of water, A the

cross-sectional area of the ring and g the gravitational acceleration. On the right-hand side of Eq. (3), the second term is

induced by the buoyancy and gravity, and Vf is the wetted volume per unit length of the ring given by

Vf ¼

pr2 h � r

pr2

2
þ jhj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

p
þ r2 arcsinðjhj=rÞ 0 � h � r

pr2

2
� jhj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

p
� r2 arcsinðjhj=rÞ �r � h � 0

0 h � �r

8>>>><
>>>>:

(4)

where r is the radius of the cross-section, and h the distance from the fluctuating wave surface height Z to the cross-

sectional centroid of the ring,

h ¼ Z� z. (5)

According to Euler’s laws, the equations along 2-axis and 3-axis can also be obtained

rð2pRÞA
@2yb

@t2
þ
@xb

@t
o3 �

@zb

@t
o1

� �
¼

Z 2p

0

f 2Rdaþ q23

Z 2p

0

ðrwVf g� rAgÞRdaþ Fl2, (6)
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rð2pRÞA
@2zb

@t2
þ
@yb

@t
o1 �

@xb

@t
o2

� �
¼

Z 2p

0

f 3Rdaþ q33

Z 2p

0

ðrwVf g� rAgÞRdaþ Fl3. (7)

Eqs. (3), (6) and (7) are the governing equations to calculate the translational displacements, where f1, f2 and f3 are

the wave force on the ring per unit length along 1-, 2- and 3-axis, and Fl1, Fl2 and Fl3 are mooring cable forces.

Rotational motions

Besides the translations of the circular ring, its rotations around three axes are subjected to water waves. Through

Euler’s laws, the equations governing the rotations around 1-, 2- and 3-axis can be given as follows:

I1
@o1

@t
þ ðI3 � I2Þo3o2 ¼

Z 2p

0

f 3R sin aRdaþ
Z 2p

0

q33 � ðrwVf g� rAgÞR sin aRdaþMl1, (8)

I2
@o2

@t
þ ðI1 � I3Þo1o3 ¼ �

Z 2p

0

f 3R cos aRdaþ
Z 2p

0

q33ðrwVf g� rAgÞR cos aRdaþMl2

� �
, (9)

I3
@o3

@t
þ ðI2 � I1Þo1o2 ¼

Z 2p

0

f wR � Rdaþ
Z 2p

0

q23ðrwVf g� rAgÞR � R daþ FlwR, (10)

where I1, I2 and I3 are three principal moments of inertia of the ring; Ml1 and Ml2 denote the moments induced by the

mooring cable forces around 1-axis and 2-axis, respectively; fw are the wave forces per unit length of the ring along

the circumferential direction, and Flw is a component of the mooring line force along the circumferential direction of

the ring.
2.2. Governing equations for in-plane elastic deformations

To analyze the deformation of the ring, an element of the ring is regarded as a curved beam. As shown in Fig. 4, the

in-plane elastic deformations include the circumferential deformation w and radial deformation u. The internal

forces on the cross-section include circumferential tensile force N, transverse shear force Qu, and bending moment

Mv around the v-axis. In addition, fv denotes the slope of the deflection profile around the v-axis without con-

sidering the shear effect. Applying Newton’s Second Law, three equations governing the deformations are obtained, as

follows:

@Qu

@a
þN þ Fu ¼ rAR

@2u

@t2
;

@N

@a
�Qu � Fw ¼ rAR

@2w

@t2
;

@Mv

@a
þ RQu ¼ rIvR

@2fv

@t2
, (11)

where Iv is the moment of inertia of the cross-section of the ring around the v-axis, E the modulus of elasticity and G the

shear modulus of elasticity; Fu and Fw are the normal and circumferential forces

Fu ¼ ½f uRþ ðrw8f g� rAgÞðcos aq13 þ sin aq23Þ�Rdaþ Flu,

Fw ¼ ½f wRþ ðrw8f g� rAgÞð� sin aq13 þ cos aq23Þ�Rdaþ Flw. (12)

In the integrand on the right-hand side of Eq. (12), fu and fw are wave forces in the normal and circumferential

directions, respectively, and the second terms are induced by buoyancy and gravity. Flu and Flw are the normal and

tangential components of mooring cable forces, respectively.

According to engineering mechanics, the bending moment and shear force are dependent on the deformations

through the following formulae

M ¼
EIv

R

@fv

@a
; Qu ¼

k0AG

R

@u

@a
þ w� Rfv

� �
, (13)

where k0 is a correction coefficient, depending on the shape of the cross section.
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Fig. 4. In-plane deformation and internal forces for an element of the ring.
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Substituting Eq. (13) into (11), the equation governing racial deformation u and circumferential deformation w can be

obtained as follows:

@5u

@a5
þ
@4w

@a4
þ
@3u

@a3
þ
@2w

@a2
þ

r2R4

Ek0G

@5u

@t4@a

�
rR2

E
þ

rR2

k0G

� �
@5u

@t2@a3
þ

rAR4

EIv

�
rR2

E

� �
@3u

@t2@a

þ
rR2

k0G
�

rR2

E

� �
@4w

@t2@a2
�

rR2

E
þ

rAR4

EIv

� �
@2w

@t2
�

r2R4

Ek0G

@4w

@t4

¼
rR3

Ek0AG

@3Fu

@t2@a
þ
@2Fw

@t2

� �
þ

R3

EIv

@Fu

@a
þ Fw

� �
�

R

k0AG

@3Fu

@a3
þ
@2Fw

@a2

� �
. (14)

Based on the assumption of small deformations, we consider that the centerline is inextensible, i.e.

@w

@a
¼ u. (15)

By virtue of Eq. (15), Eq. (14) is reduced to containing a single variable w in the form of

@6w

@a6
þ 2

@4w

@a4
þ
@2w

@a2
þ

r2R4

Ek0G

@6w

@t4@a2
�

r2R4

Ek0G

@4w

@t4

�
rR2

E
þ

rR2

k0G

� �
@6w

@t2@a4
� 2

rR2

E
�

rAR4

EIv

�
rR2

k0G

� �
@4w

@t2@a2
�

rR2

E
þ

rAR4

EIv

� �
@2w

@t2

¼
rR3

Ek0AG

@3Fu

@t2@a
þ
@2Fw

@t2

� �
þ

R3

EIv

@Fu

@a
þ Fw

� �
�

R

k0AG

@3Fu

@a3
þ
@2Fw

@a2

� �
. (16)
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The dimensionless procedure of Eq. (16) can be performed through dividing each term of both sides of the equation

by R. The order of magnitude of E and G is 108, of r is 100, of A is 10�3, of R is 100, of o is 100 and of the moment of

inertia is 10�5. Therefore, the order of magnitude of terms the denominators of which contain the product of E and G is

less than 10�10, while the order of magnitude of the others is more than 10�5. Therefore, Eq. (16) can be simplified into

the following form:

@6w

@a6
þ 2

@4w

@a4
þ
@2w

@a2

�
rR2

E
þ

rR2

k0G

� �
@6w

@t2@a4

� 2
rR2

E
�

rAR4

EIv

�
rR2

k0G

� �
@4w

@t2@a2
�

rR2

E
þ
rAR4

EIv

� �
@2w

@t2

¼
R3

EIv

@Fu

@a
þ Fw

� �
�

R

k0AG

@3Fu

@a3
þ
@2Fw

@a2

� �
. (17)

The deformations can be expressed as a weighted sum of eigenmodes when the modal superposition method is

applied. Thus the circumferential deformation w and radial deformation u are

w ¼
XN

i¼2

½ts
i ðtÞ sinðiaÞ þ tc

i ðtÞ cosðiaÞ�,

u ¼
@w

@a
¼
XN

i¼2

½its
i ðtÞ cosðiaÞ � itc

i ðtÞ sinðiaÞ�, (18)

where the subscript i denotes the ith mode. It should be noted that the mode number i begins with 2, because the 1st

mode represents the rigid-body displacement. When Eq. (18) is substituted into Eq. (17) and the orthogonality of the

trigonometric functions is utilized, the governing equations for each mode can be obtained as follows:

prR2 ði2 � 1Þ2Iv þ i2ði2 þ 1Þ
Iv

k

E

G
þ ði2 þ 1ÞAR2

� �
@2ts

i

@t2

¼ R
i2

k

Iv

A

E

G
þ R2

� �
i

Z 2p

0

Fu cosðiaÞdaþ
Z 2p

0

Ft sinðiaÞda
� �

� pEIvði
3 � iÞ2ts

i , (19)

and

rR2 ði2 � 1Þ2Iv þ
EIi

kG
i2ði2 þ 1Þ þ AR2ði2 þ 1Þ

� �
@2tc

i

@t2
p

¼ �R R2 þ
EIv

kAG
i2

� �
i

Z 2p

0

Fn sinðiaÞda�
Z 2p

0

Ft cosðiaÞda
� �

� pEIvði
3 � iÞ2tc

i ; i ¼ 2; 3; . . . ; J.

Eqs. (19) are the governing equations to compute the circumferential deformation. Then another equation governing

the slope fv can be obtained by combining Eqs. (11) and (13), and the modal superposition method is used to represent

fv as follows:

fv ¼
XJ

i¼2

½cs
i ðtÞ sinðiaÞ þ cc

i ðtÞ cosðiaÞ�. (20)

Manipulating Eq. (20) by the above procedure, the governing equation for each mode can be obtained in the form of

prR2 ði2 � 1Þ2Iv þ i2ði2 þ 1Þ
Iv

k

E

G
þ ði2 þ 1ÞAR2

� �
@2cs

i

@t2

¼ �R2ði2 � 1Þ i

Z 2p

0

Fu cosðiaÞdaþ
Z 2p

0

Fw sinðiaÞda
� �

� pEIvði
3 � iÞ2cs

i , (21)
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and

prR2 Ivði
2 � 1Þ2 þ

EIv

kG
i2ði2 þ 1Þ þ AR2ði2 þ 1Þ

� �
@2cc

i

@t2

¼ R2ði2 � 1Þ i

Z 2p

0

Fu sinðiaÞda�
Z 2p

0

Fw cosðjaÞda
� �

� ði3 � iÞ2EIvpc
c
i ; i ¼ 2; 3; . . . ; J.

Eqs. (19) and (21) are then used to analyze the in-plane deformations of the ring.
2.3. Governing equations for out-of-plane elastic deformations

As shown in Fig. 5, the out-of-plane elastic deformations are denoted by v, positive along the positive direction of the

v-axis. The internal forces on the cross-section include the transverse shear force Qv, and bending moments Mu and Mw

along the u-axis and w-axis. In addition, fu and fw denote the slope of the deflection profile around the u-axis and w-

axis with the shear effect neglected. Applying Newton’s Second Law, three equations governing the deformations can

be obtained in the form of

@Qv

@a
þ Fv ¼ rAR

@2v

@t2
;

@Mu

@a
þMw �QvR ¼ rIuR

@2fu

@t2
;

@Mw

@a
�Mu ¼ rIwR

@2fw

@t2
, (22)

where Iu and Iw are the moment of inertia of the cross-section of u-axis and w-axis obtained according to the parallel-

axis theorem, and Fv is the component of exterior forces along the v-axis, which is given by

Fv ¼ ½f vRþ q33ðrw8f g� rAgÞ�Rdaþ Flv. (23)

In engineering mechanics, bending moment and shear force are dependent on the deformations through the following

formula:

Mu ¼
EIu

R

@fu

@a
þ fw

� �
; Mw ¼

GIw

R

@fw

@a
� fu

� �
; Qv ¼

k0AG

R

@v

@a
þ fu

� �
. (24)
Fig. 5. Out-of-plane deformation and internal forces for an element of the ring.



ARTICLE IN PRESS
G.-h. Dong et al. / Journal of Fluids and Structures 26 (2010) 176–192184
Substituting Eq. (24) into (22), the equation governing the out-of-plane deformation n can be obtained as follows:

@6v

@a6
þ 2

@4v

@a4
þ
@2v

@a2
� rAR2 R2

Cw

þ
1

k0AG

� �
@2v

@t2
� r2R4 Iu

Cwk0G
þ

AIwR2

EIuCw

þ
Iw

EIk0G

� �
@4v

@t4

�
r3IwR6

ECwk0G

@6v

@t6
þ rR2 AR2

EI
�

2

k0G
þ

Iu

Cw

þ
Iw

EIu

� �
@4v

@t2@a2
� rR2 1

E
þ

Iw

Cw

þ
1

k0G

� �
@6v

@t2 @a4

þ r2R4 1

Ek0G
þ

Iw

Cwk0G
þ

Iw

ECw

� �
@6v

@t4 @a2

¼ �
R

k0AG

@4Fv

@a4
þ R

R2

EIu

�
2

k0AG

� �
@2Fv

@a2
� R

R2

Cw

þ
1

k0AG

� �
Fv

rR3

k0AG

1

E
þ

Iw

Cw

� �
@4Fv

@t2@a2
� rR3 Iu

k0AGCw

þ
IwR2

EIuCw

þ
Iw

k0AGEIu

� �
@2Fv

@t2
�

r2IwR5

k0AGECw

@4Fv

@t4
. (25)

It is noted that the terms including the denominators containing the product of E and G in Eq. (25) are sufficiently

small to be neglected. Thus Eq. (25) can be simplified into the following form

@6v

@a6
þ 2

@4v

@a4
þ
@2v

@a2
� rAR2 R2

Cw

þ
1

k0AG

� �
@2v

@t2
þ rR2 AR2

EIu

�
2

k0G
þ

Iu

Cw

þ
Iw

EIu

� �
@4v

@t2@a2

� rR2 1

E
þ

Iw

Cw

þ
1

k0G

� �
@6v

@t2@a4
¼ �

R

k0AG

@4Fv

@a4
þ R

R2

EIu

�
2

k0AG

� �
@2Fv

@a2
� R

R2

Cw

þ
1

k0AG

� �
Fv (26)

By the description in Section 2.2, the deformations of a closed ring can be expressed through the modal superposition

method (Blevins, 1979). Thus the deformation can be expressed as

v ¼
XJ

i¼2

½uc
i ðtÞ cosðiaÞ þ us

i ðtÞ sinðiaÞ�, (27)

where the subscript i denotes the ith mode. Substituting Eq. (27) into Eq. (26) and utilizing the orthogonality of the

trigonometric functions, the equations for each mode of deformation can be obtained as follows:

rpR2 EIu

AR2

GIw

þ
1

k0G

� �
þ AR2 �

2EIu

k0G
þ

EIuIu

GIw

þ Iw

� �
i2 þ Iu þ

E

G
þ

E

k0G

� �
i4

� �
@2uc

i

@t2

¼ R
EIu

k0AG
ði2 � 1Þ2 þ R2 i2 þ

EIu

Cw

� �� � Z 2p

0

Fv cosðiaÞda� ði3 � iÞ2EIupuc
i , (28)

and

rpR2 EIuAR2

GIw

þ
EIu

k0G

� �
þ AR2 �

2EIu

k0G
þ

EIuIu

GIw

þ Iw

� �
i2

�

þ Iu þ
EIu

G
þ

EIu

k0G

� �
i4
�
@2us

i

@t2

¼ R
EIuði

2 � 1Þ2

k0AG
þ R2 i2 þ

EIu

Cw

� �� � Z 2p

0

Fv sinðiaÞda� ði3 � iÞ2EIupus
i .

Eq. (28) is used to compute the out-of-plane deformations v. Similarly the equations governing the two slopes fu and

fw can be obtained according to the above deduction by combining Eq. (22) and Eq. (24). Here, the slopes are supposed

to be fu ¼
PJ

i¼2½j
s
i ðtÞ sinðiaÞ þ jc

i ðtÞ cosðiaÞ� and fw ¼
PJ

i¼2½x
c
i ðtÞ cosðiaÞ þ xs

i ðtÞ sinðiaÞ�, and the governing equations

are given by

rR2 Iu
EAR2

GIw

þ
E

k0G

� �
þ AR2 �

2EIu

k0G
þ

EIuIu

GIw

þ Iw

� �
i2 þ Iu þ

EIu

G
þ

EIu

k0G

� �
i4

� �
@2js

i

@t2
p

¼ iR2 i2 þ
EIu

GIw

� �Z 2p

0

Fv cosðiaÞda� ði3 � iÞ2EIupjs
i , (29)
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and

rR2 EIuAR2

GIw

þ
EIu

k0G

� �
þ AR2 �

2EIu

k0G
þ

EIuIu

GIw

þ Iw

� �
i2

�
þ Iu þ

EIu

G
þ

EIu

k0G

� �
i4
�
@2jc

i

@t2
p

¼ �iR2 i2 þ
EIu

GIw

� �Z 2p

0

Fv sinðiaÞda� ði3 � iÞ2EIupjc
i ;

rpR2 EIu

k0G
þ

EIuAR2

GIw

� �
þ AR2 �

2EIu

k0G
þ Iw þ

EIuIu

GIw

� �
i2 þ

EIu

k0G
þ Iu þ

EIu

G

� �
i4

� �
@2xc

i

@t2

¼ �i2R2 1þ
EIu

GIw

� �Z 2p

0

Fv cosðiaÞda� ði3 � iÞ2EIupx
c
i (30)

and

rR2 EIu

k0G
þ

EIuAR2

GIw

� �
þ AR2 �

2EIu

k0G
þ Iw þ

EIIu

GIw u

� �
i2 þ

EIu

k0G
þ Iu þ

EIu

G

� �
i4

� �
@2xs

i

@t2
p

¼ �i2R2 1þ
EIu

Cw

� �Z 2p

0

Fv sinðiaÞda� ði3 � iÞ2EIupxs
i .

Eqs. (28), (29) and (30) are used to solve the out-of-plane deformations of the ring.

Combining the equations of the rigid-body motions of the ring (3), (6), (7), (8), (9) and (10) and deformation

equations, including in-plane ones (19) and (21) and out-of-plane ones (28), (29) and (30), the displacements of the ring,

the internal forces and stress on the cross-section of the ring can be solved numerically.
3. Wave forces predicted by the Morison formula

The diameter of the cross-section of a flotation ring is much smaller than the wavelength, making the wave diffraction

effect negligible. The wave forces acting on the ring, therefore, can be evaluated from the Morison formula. The

Morison formula is a well-known equation, initially proposed for calculating the flow forces on a slender vertical

member in surface waves. However, the centerline of the element of the ring is inclined to the advancing direction of

waves, and the ring oscillates with the water waves. Here, the form of the Morison formula given by Brebbia and

Walker (1979) is employed, as in Eq. (31). In the formula, the drag force is related to the square of the relative velocity

of a water particle to an element of the ring, and the added mass force and inertia force are proportional to the

acceleration of the water particle and that relative to an element of the ring, respectively:

~f ¼ rwCDS
~V relj~V relj

2
þ rwKmVf

@~V rel

@t
þ rwVf

@~V

@t
, (31)

where ~V denotes the velocity of the water particle obtained from the second-order wave theory (see Appendix 2), ~V rel

denotes the velocity of the water particle relative to the member, CD and Km are the empirical coefficients, rw the mass

density of water and S the projected areas of the element of the ring per unit length immersed in water. Due to the

changing angle between the centerline of the element of the ring and the advancing direction of waves, we calculate the

wave forces in the n–w–v coordinate system. The projected areas of the ring per unit length Su, Sw and Sv along the n-,

w- and v-axis are given by

Su ¼

2r

rþ h

r� h

0

8>>><
>>>:

; Sw ¼

2r

rþ 2r arcsinðjhj=rÞ=p

r� 2r arcsinðjhj=rÞ=p

0

8>>><
>>>:

; Sv ¼

2r

2r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

p
0

8>>><
>>>:

when

h � r

0 � h � r

�r � h � 0

h � �r

. (32)
4. Results and discussion

Reasonable values of hydrodynamic coefficients are pre-fixed by comparison between the numerical results of the

rigid-body displacements of the ring and experimental data. The physical model tests were conducted by Gui (2006),
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with the waves propagating along the x-axis. The multi-directional waves acting on the ring are then analyzed to show

the influence of hydroelasticity. In the numerical examples, gravity acceleration g is set as 9.8m/s2, and the density of

water is 1000 kg/m3. The fourth-order Runge–Kutta algorithm is used to solve the differential equations governing the

deformations and motions, and the numerical calculation is processed by programming with Fortran Language. In the

calculation, the ring is subdivided into 400 arc subsections to calculate the integral in the equations, and the time step is

equal to three-thousandths of the wave period. The calculation will stop when the history of one period is very close to

that of the subsequent period.

4.1. Description of physical model tests

The physical model tests of a gravity-type fish cage were conducted in a wave-current flume at the State Key

Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. The wave-current flume is

69m long, 2m wide and 1.8m high, equipped with an irregular wave-maker and a current-producing system. The

incident waves propagated along the positive x-direction. The mooring line forces were measured by two transducers

attached to the bottom of each mooring lines. Three diodes (front, middle and back) numbered 1, 2 and 3 were fixed on

the floating system for motion analysis. The movement of diodes was recorded by a CCD camera, maximum relative

error of the measurements of which was less than 10% (Gui et al., 2006).

The configuration of the net cage in model tests is shown in Fig. 1. The radius of the ring and cross-sectional radius

are 0.423 and 0.00766m, respectively. The modulus of elasticity of the material of the flotation ring is 9.0� 108 Pa, and

its density is 953 kg/m3. The mooring cable is simulated using nylon line. Fitting of this experimental data yields the

following empirical formula relating the elongation and the force of the mooring line

F1A ¼
�360:21�2 þ 82:9� when l4l0

0 when l � l0

(
where � ¼

l � l0

l0
; (33)

l0 is the initial length of the mooring cable, and l its length when the model fish cage is moving. In the physical model

tests, twelve cases covering four wave heights (0.2, 0.25, 0.29 and 0.034m) and five periods ( 1.2, 1.4, 1.6, 1.8 and 2.0 s)

were considered.

In our numerical calculation, the maximum of the mode J is equal to 5. A numerical example is given as follows:

when the wave height and period are 0.34m and 2.0 s, respectively, the maximum values (tJ) of tangent deformations

under each mode J (J ¼ 2–5) are 3.85� 10�4, 1.35� 10�5, 3.18� 10�6 and 1.21� 10�6m, respectively. It can be found

that the response contributed by the second mode is much larger than that by the fifth mode. When the mode number J

is greater than 5, the response contributed by the mode becomes negligible. The same results can also be found in the

out-of-plane on deformation and slopes. Here, the maximum of the mode J is set at 5.

4.2. Comparison of theoretical results and experimental data

To compute the wave forces from the Morison formula, the values of hydrodynamic coefficients CD and Km should

be pre-fixed. Li et al. (2007) investigated the hydrodynamic behavior of a straight floating pipe, and suggest a range of

the hydrodynamic coefficients. Referring to the research of Li et al. (2007), CDn and CDv are set as 0.5 each, and CDw

and Km are set as 0.16 and 0.2, respectively. With these values substituting into the Morison formula, the theoretical

model presented in Section 3 is applied to simulate the physical model tests (Gui, 2006). Waves propagate along the

positive direction of the x-axis, which means that the propagation angle s of incident wave is equal to zero.

Additionally, the velocity potential is given according to second-order wave theory. The wave surface elevation, the

velocities and accelerations of water particle can then be obtained by wave theory in Appendix 2. In Fig. 6, hollow

points represent the average of the maximum positive displacements of surge and heave on the consecutive water waves

through the experimental measurement, and solid points depict the numerical results. It can be seen that the predicted

results of surge and heave displacements are all in agreement with the experimental data. The maximum of the relative

error between simulated and measured data is 15%. As shown in the Fig. 6, the error between simulated and measured

data is larger when the wave height becomes larger. This phenomenon may be due to neglecting the nonlinear effects of

both waves and the mooring line in our present numerical model, which will be improved in our future research.

4.3. Elastic response

In the experimental model tests mentioned above, the similarity of the modulus of elasticity is not fully considered

because it is difficult to find the appropriate material with a modulus of elasticity fully in accord with the demand of the
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physical model tests. In this section, the floating ring in a prototype dimension is considered and simulated. The radius

of the ring is 8.46m, the radius and the wall depth of the cross-section of the ring are 0.125 and 0.013m, respectively,

and the modulus of elasticity is still 9.0� 108 Pa. The initial length of mooring cable is 63.27m, while the coordinate

of attachment points A, B, C and D in the global coordinate system is (64.5, 19.4, �20.0m), (�64.5, 19.4, �20),
Fig. 6. Comparison of the predicted results with the experimental data for xg (top) and zg (below).

Fig. 7. Responses of the maximum absolute normal deformations with different wave directions.
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(�64.5, �19.4, �20.0m) and (64.5, �19.4, �20.0m). The relationship between the force and the elongation of the

mooring line is set as follows:

F1A ¼
372494:08�1:037 when l4l0

0 when l � l0

(
where � ¼

l � l0

l0
, (34)

which is an empirical formula, and it can also be given according to the real measurements.

Firstly, the influence of the propagation angle sof the incident wave is analyzed, while the wave height is 2.0m, and

wave period is 20.0 s. The angle s increases from 0 to p/2 at an interval of p/16. Figs. 7–9 represent the maximum

absolute values of normal, circumferential, and out-of-plane deformations. It can be seen that the minimum magnitude

of deformations, including in-plane and out-of-plane ones, will occur when s is 0. It also means that the ring deforms

most weakly when the incident wave propagates along the x-axis. Therefore, the placement of a fish cage is

recommended to be configured in the direction of the principal axis of which is parallel to the wave direction.
Fig. 8. Responses of the maximum absolute circumferential deformations with different wave directions.

Fig. 9. Responses of the maximum absolute out-of-plane deformations with different wave directions.
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Fig. 10. Sketch of three kinds of mooring arrangments (m1, m2, and m3).

Table 1

The maximum absolute deformations with different configurations of mooring cables.

Configuration of

mooring cables

Maximum absolute normal

deformation (m)

Maximum absolute circumferential

deformation (m)

Maximum absolute out-of-

plane deformation (m)

m1 0.040668 0.018434 0.398737

m2 0.009399 0.002694 0.406882

m2 0.048172 0.019968 0.401414
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Additionally, comparing the out-of-plane deformations and the in-plane ones (see Figs. 7–9), it can be seen that the

magnitude of v is much larger than that of n and w. It can be concluded that the out-of-plane breakage of the ring would

occur prior to the in-plane one.

Secondly, the effect of the different kinds of arrangements of mooring lines is analyzed. Besides the above form

shown in Fig. 1, in which the attachment points A, B, C and D in the global coordinate system are another form

of the ordinates of anchored points is considered: (19.4, 64.5, �20.0m), (�19.4, 64.5,�20.0m), (�19.4, �64.5, �20.0m)

and (19.4, �64.5, �20.0m). The above two forms are named ‘‘m1’’ and ‘‘m3’’. The form ‘‘m2’’ is that the attachment

points A, B, C and D in the global coordinate system being set as (48.4, 48.4, �20m), (�48.4, 48.4, �20m), (�48.4,

�48.4, �20m) and (48.4, �48.4, �20m). The configurations of the three types of mooring arrangement are shown in

Fig. 10. It is notable that the initial lengths of mooring line are the same.

The maximum absolute deformations are listed in Table 1. It can be found that under the mooring arrangement

‘‘m2’’, in-plane deformations of the ring are smaller than the other two kinds of arrangements. For out-of-plane

deformations, the distinctions among the three kinds of arrangements are small.

According to the above theoretical analysis, a viable scheme of the fish cage arrangement can be obtained. It is

suggested that it is better if the cage is moored by symmetric mooring cables around two principal axes, and that a

principal axis is parallel to wave incident direction. It is also noted that the out-of-plane deformations are much larger

than the in-plane one.

In order to examine the validity of the calculated elastic response, the static deformation of a circular ring calculated

by our analytical method has been validated by comparison with the calculated results by ANSYS software. The details
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of the validation have been published previously (Zong et al., 2008). In our future research, more calculations and

physical tests have been planned to obtain the elastic response of the ring for validation of the method.
5. Conclusions

A theoretical analysis for evaluating the rigid-body motions of the ring subjected to water waves is presented, coupled

with elastic deformations. The predicted results of rigid-body displacements are compared with the experimental data,

with acceptable correlation between numerical results and experimental data. The elastic responses of a ring under

different incident wave directions and mooring arrangements are calculated and analyzed. Based on the simulated

results, some useful suggestions on mooring arrangements and placement of the fish cage are obtained.
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Appendix 1

Bryant angles are the common parameters used to describe the angular orientation of a body in space. The angular

orientation of a given body-fixed coordinate system 1–2–3 can be envisioned to be the result of three successive

rotations. The three angles of rotation corresponding to the three successive rotations are defined as Bryant angles.

The first rotation may be carried out counterclockwise about the x-axis through an angle y1; the resultant coordinate
system will be labeled x0�y0–z0, as shown in Fig. 11. The second rotation, through an angle y2 counterclockwise about
the y0 axis, produces the coordinate system. Finally, the third rotation, counterclockwise about the z00 axis through an

angle y3, results in the 1–2–3 coordinate system. The transformation matrices for the individual rotations are

1 0 0

0 cos y1 sin y1
0 � sin y1 cos y1

2
64

3
75;

cos y2 0 � sin y2
0 1 0

sin y2 0 cos y2

2
64

3
75;

cos y3 sin y3 0

� sin y3 cos y3 0

0 0 1

2
64

3
75. (35)
Fig. 11. Schematic diagram of Bryant angles.
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Hence, the matrix of the complete transformation, Eq. (2), is

cos y2 cos y3 cos y1 sin y3 þ sin y1 sin y2 cos y3 sin y1 sin y3 � cos y1 sin y2 cos y3
� cos y2 sin y3 cos y1 cos y3 � sin y1 sin y2 sin y3 sin y1 cos y3 þ cos y1 sin y2 sin y3
sin y2 � sin y1 cos y2 cos y1 cos y2

2
64

3
75. (36)
Appendix 2

A second-order wave theory (Stoker, 1957) is employed to calculate the velocity and acceleration of a water particle.

Suppose that wave height is H. The fluctuating wave surface height Z is given by

Z ¼
H

2
�

H

2

k

2 sinh 2kd
þ cosðkxxþ kyy� otÞ þ

H

2

k

4

cosh kdð2 cosh2 kd þ 1Þ

sinh3 kd
cos 2ðkxxþ kyy� otÞ

� �
, (37)

where o is the circular frequency, k the wave number, d the wave depth and kx the component of wave number along

the x-axis, kx ¼ k coss, and ky the component of wave number along y-axis, ky ¼ k sins.
The horizontal and vertical velocities of a water particle are

Vx ¼ o
kx

k

H

2

cosh kðzþ dÞ

sinh kd
cosðkxxþ kyy� otÞ þ

3

4
k

H

2

� �
cosh 2kðzþ dÞ

ðsinh kdÞ4
cos 2ðkxxþ kyy� otÞ

� �
, (38)

Vy ¼ o
ky

k

H

2

cosh kðzþ dÞ

sinh kd
cosðkxxþ kyy� otÞ þ

3

4
k

H

2

� �
cosh 2kðzþ dÞ

ðsinh kdÞ4
cos 2ðkxxþ kyy� otÞ

� �
, (39)

Vz ¼ o
H

2

sinh kðzþ dÞ

sinh kd
sinðkxxþ kyy� otÞ þ

3

4

H

2
k
sinh 2kðzþ dÞ

sinh4 kd
sin 2ðkxxþ kyy� otÞ

� �
. (40)

The horizontal and vertical accelerations of a water particle, therefore, can be given by

@Vx

@t
¼ o2 kx

k

H

2

cosh kðzþ dÞ

sinh kd
sinðkxxþ kyy� otÞ þ

3

2
k

H

2

� �
cosh 2kðzþ dÞ

ðsinh kdÞ4
sin 2ðkxxþ kyy� otÞ

� �
, (41)

@Vy

@t
¼ o2 ky

k

H

2

cosh kðzþ dÞ

sinh kd
sinðkxxþ kyy� otÞ þ

3

2
k

H

2

� �
cosh 2kðzþ dÞ

ðsinh kdÞ4
sin 2ðkxxþ kyy� otÞ

� �
, (42)

@Vz

@t
¼ �o2 H

2

sinh kðzþ dÞ

sinh kd
cosðkxxþ kyy� otÞ þ

3

2

H

2
k
sinh 2kðzþ dÞ

sinh4 kd
cos 2ðkxxþ kyy� otÞ

� �
. (43)
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